Learning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines

نویسندگان

  • Kihyuk Sohn
  • Guanyu Zhou
  • Chansoo Lee
  • Honglak Lee
چکیده

Unsupervised feature learning has emerged as a promising tool in learning representations from unlabeled data. However, it is still challenging to learn useful high-level features when the data contains a significant amount of irrelevant patterns. Although feature selection can be used for such complex data, it may fail when we have to build a learning system from scratch (i.e., starting from the lack of useful raw features). To address this problem, we propose a point-wise gated Boltzmann machine, a unified generative model that combines feature learning and feature selection. Our model performs not only feature selection on learned high-level features (i.e., hidden units), but also dynamic feature selection on raw features (i.e., visible units) through a gating mechanism. For each example, the model can adaptively focus on a variable subset of visible nodes corresponding to the task-relevant patterns, while ignoring the visible units corresponding to the task-irrelevant patterns. In experiments, our method achieves improved performance over state-of-the-art in several visual recognition benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary material: Learning and Selecting Features viaPoint-wise Gated Boltzmann Machines

There are many classification tasks where we are given a large number of unlabeled examples in addition to only a few labeled training examples. For such scenario, it is important to include unlabeled examples during the training to generalize well to the unseen data, and thus avoid overfitting. Larochelle and Bengio (2008) proposed the semi-supervised training of the discriminative restricted ...

متن کامل

Learning Feature Hierarchies with Centered Deep Boltzmann Machines

Deep Boltzmann machines are in principle powerful models for extracting the hierarchical structure of data. Unfortunately, attempts to train layers jointly (without greedy layerwise pretraining) have been largely unsuccessful. We propose a modification of the learning algorithm that initially recenters the output of the activation functions to zero. This modification leads to a better condition...

متن کامل

بازیابی مبتنی بر شکل اجسام با توصیفگرهای بدست آمده از فرآیند رشد کانتوری

In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they  get to the shape contour. Three different shape descriptors are extracted from this process: the first descript...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Joint Training Deep Boltzmann Machines for Classification

We introduce a new method for training deep Boltzmann machines jointly. Prior methods of training DBMs require an initial learning pass that trains the model greedily, one layer at a time, or do not perform well on classification tasks. In our approach, we train all layers of the DBM simultaneously, using a novel training procedure called multi-prediction training. The resulting model can eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013